# SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS) 

Siddharth Nagar, Narayanavanam Road - 517581
QUESTION BANK (DESCRIPTIVE)

Subject with Code: Analog Communications (20EC0405)
Regulation: R20

Course \& Branch: B.Tech. - ECE

Year \& Sem: II-B.Tech. \& I-Sem

## UNIT -I

AMPLITUDE MODULATION - I

| 1 | a) | Define Communication and brief about different types of communications. | [L1] [CO1] | [4M] |
| :---: | :---: | :---: | :---: | :---: |
|  | b) | Explain the elements of communication system with a neat block diagram. | [L2] [CO1] | [8M] |
| 2 | a) | Define modulation. Classify different types of modulation. | [L2] [CO2] | [6M] |
|  | b) | Explain the need for Modulation. | [L2] [CO1] | [6M] |
| 3 | a) | Define Amplitude Modulation. Derive expression for AM wave and sketch its frequency spectrum. | [L3] [CO2] | [8M] |
|  | b) | Determine the Modulation index \& Bandwidth of AM. | [L3] [CO1] | [4M] |
| 4 | a) | Derive the expression for total transmitted power of AM wave and comment on the power wastage in AM | [L3] [CO2] | [6M] |
|  | b) | An AM transmitter radiates 9 kW of power when the carrier is un-modulated and 10.125 kW of power when the carrier is sinusoidal modulated. Find the modulation index \& Percentage modulation. Now if another sine wave corresponding to $40 \%$ modulation is transmitted simultaneously. Calculate total radiated power. | [L3] [CO3] | [6M] |
| 5 | a) | Derive the expression for transmission efficiency of AM. | [L3] [CO3] | [5M] |
|  | b) | A given AM broadcast station transmits a total power of 5 kW when the carrier is modulated by sinusoidal signal with a modulation index of 0.7071 . Find the Carrier power and Transmission Efficiency. | [L3] [CO3] | [7M] |
| 6 | a) | Illustrate the Amplitude modulation for single tone information. | [L2] [CO2] | [6M] |
|  | b) | A modulating signal $10 \sin \left(2 \pi \times 10^{3} t\right)$ is used to modulate a carrier signal $20 \sin \left(2 \pi \times 10^{4} t\right)$. Compute the modulation index, $\%$ of modulation index, frequency of sideband components and their amplitudes. What will be the bandwidth of modulated signal? | [L3] [CO3] | [6M] |
| 7 | a) | Explain the generation of AM wave using square-law modulator along with suitable diagram and analysis. | [L2] [CO4] | [7M] |
|  | b) | What are the advantages and disadvantages of AM? | [L1] [CO1] | [5M] |
| 8 | a) | With a neat diagram and relevant equations, explain the generation of AM wave using Switching modulator. | [L2] [CO4] | [8M] |
|  | b) | Define demodulation. List different types of AM demodulators. | [L1] [CO4] | [4M] |
| 9 | a) | Discuss about square-law demodulation of an AM wave. | [L2] [CO4] | [7M] |
|  | b) | List the features and applications of AM | [L1] [CO1] | [5M] |
| 10 | a) | How a modulating signal can be detected using envelope detector? Explain. | [L2] [CO4] | [6M] |
|  | b) | Explain the block diagram of AM transmitter. | [L2] [CO2] | [6M] |

## UNIT-II

AMPLITUDE MODULATION - II

| 1 | a) | What is DSB-SC Modulation? Explain the time and frequency domain expressions of DSB-SC wave. | [L2] [CO2] | [6M] |
| :---: | :---: | :---: | :---: | :---: |
|  | b) | Derive the expression for DSB-SC Modulation of single tone information and list the advantages and disadvantages of DSB-SC signal | [L3] [CO2] | [6M] |
| 2 | a) | Derive the expression for total transmitted power of DSB-SC wave. | [L3] [CO4] | [5M] |
|  | b) | Prove that the Balanced Modulator produces an output consisting of sidebands only with carrier removed. | [L3] [CO4] | [7M] |
| 3 | a) | Explain the functionality of Ring modulator for generation of DSB-SC wave. | [L2] [CO2] | [8M] |
|  | b) | Calculate the Transmission bandwidth of DSB-SC wave \& power saving. | [L3] [CO3] | [4M] |
| 4 | a) | Explain coherent detection of DSB-SC wave with a neat block diagram and relevant equations | [L2] [CO2] | [6M] |
|  | b) | Illustrate the effect of phase error on the output of coherent detector and calculate the percentage of power saving for a DSB-SC signal for the percent modulation of $100 \%$ and $50 \%$ | [L3] [CO3] | [6M] |
| 5 | a) | Define Hilbert Transform and List its properties. | [L2] [CO2] | [5M] |
|  | b) | Explain single tone modulation for transmitting only upper side band (USB) frequency of SSB modulation. | [L2] [CO2] | [7M] |
| 6 | a) | Sketch and explain the block diagram of SSB-SC signal generation using frequency discrimination method and list the drawbacks. | [L2] [CO2] | [6M] |
|  | b) | Derive the power calculations of SSB-SC. | [L2] [CO2] | [6M] |
| 7 | a) | With a neat block diagram explain the operation of phase discrimination method using SSB and list the drawbacks. | [L2] [CO2] | [8M] |
|  | b) | Determine the total power content of DSB-SC and SSB-SC. Assume the amplitude and frequency of modulating signal is 6 V and 10 kHz respectively, amplitude and frequency of carrier signal is 12 V and 700 kHz . | [L3] [CO3] | [4M] |
| 8 | a) | What are the advantages and disadvantages of SSB-SC signal? | [L1] [CO1] | [6M] |
|  | b) | The power of an SSB transmission is 10 kW . This transmission is to be replaced by a standard AM signal with the same power content. Calculate the power content of the carrier and each of the sidebands when the percentage modulation is $80 \%$. | [L3] [CO4] | [6M] |
| 9 | a) | Explain the principle of coherent detection of SSB-SC modulated wave with a neat block diagram. | [L2] [CO2] | [6M] |
|  | b) | Calculate the percentage power saving for SSB signal if AM wave is modulated for a depth of a) $100 \%$ b) $50 \%$ | [L3] [CO3] | [6M] |
| 10 | a) | Explain the scheme for generation of VSB modulated wave. | [L2] [CO2] | [4M] |
|  | b) | List the applications of VSB and its features | [L2] [CO2] | [4M] |
|  | c) | Compare different types of Amplitude modulation techniques. | [L2] [CO2] | [4M] |

## UNIT - III

ANGLE MODULATION

| 1 |  | Define angle modulation. Classify different types of angle modulation and write their mathematical expressions. | [L2] [CO1] | [6M] |
| :---: | :---: | :---: | :---: | :---: |
|  | b) | Define FM and derive the expression with necessary waveforms. | [L3] [CO3] | [6M] |
| 2 | a) | Analyze the expression of single tone NBFM. | [L4] [CO3] | [5M] |
|  |  | What are the advantages, disadvantages, and applications of FM. | [L2] [CO2] | [7M] |
| 3 |  | ) Compare between the AM \& FM | [L2] [CO4] | [5M] |
|  |  | Explain the generation of NBFM and WBFM. | [L2] [CO2] | [7M] |
| 4 |  | What are the differences between NBFM \&WBFM? | [L1] [CO2] | [6M] |
|  |  | Explain the generation of FM using Reactance Modulator. | [L2] [CO2] | [6M] |
| 5 |  | Explain the working principle of Varactor Diode Modulator. | [L2] [CO2] | [6M] |
|  | b) | Explain the block diagram of indirect method in FM generation. | [L2] [CO2] | [6M] |
| 6 | a) | Discuss about transmission bandwidth \& Carson's rule of FM signal. | [L2] [CO2] | [5M] |
|  |  | ) A 20 MHz carrier is frequency modulated by a sinusoidal signal such that the peak frequency deviation is 100 kHz . Determine the modulation index and the approximate bandwidth of the FM signal if the frequency of the modulating signal is: (i) 1 kHz (ii) 15 kHz | [L3] [CO3] | [7M] |
| 7 |  | Explain the detection of FM wave using balanced frequency discrimination. | [L2] [CO2] | [6M] |
|  |  | Describe about the functionality of zero crossing detector. | [L2] [CO2] | [6M] |
| 8 |  | Demonstrate the working principle of PLL. | [L3] [CO3] | [6M] |
|  |  | Define PM and derive the expression with necessary waveforms. | [L2] [CO2] | [6M] |
| 9 |  | ) Compare between the AM \& PM | [L2] [CO4] | [5M] |
|  | b) | Explain clearly about Pre-Emphasis and De-Emphasis circuits in FM. | [L2] [CO2] | [7M] |
| 10 |  | Explain and draw the block diagram of FM transmitter. | [L2] [CO2] | [6M] |
|  |  | A single-tone FM is represented by the voltage equation as: $v(t)=12 \cos \left(6 \times 10^{\wedge} 6 t+5 \sin 1250 t\right)$. Determine the following: <br> (i) Carrier frequency (ii) Modulating frequency (iii) Modulation index (iv) What power will this FM wave dissipate in $10 \Omega$ resistors? | [L3] [CO3] | [6M] |

## UNIT - IV <br> RADIO RECEIVER AND NOISE

| 1 | a) | What are the characteristics of radio receivers? | [L1] [CO6] | [4M] |
| :---: | :---: | :---: | :---: | :---: |
|  | b) | Write a short note on sensitivity, selectivity, fidelity \& image frequency. | [L2] [CO6] | [8M] |
| 2 | a) | Write a short note on double spotting and tracking. | [L2] [CO6] | [4M] |
|  | b) | Draw the block diagram of Super-heterodyne AM receiver and explain function of each block. | [L2] [CO6] | [8M] |
| 3 | a) | What are the advantages \& disadvantages of super heterodyning? | [L1] [CO6] | [5M] |
|  | b) | For a broadcast Super-heterodyne AM receiver having no RF amplifier, the loaded Quality factor of the antenna coupling circuit is 100 . Now, if the intermediate frequency is 455 kHz , determine the image frequency and its rejection ratio at an incoming frequency of 1000 kHz . | [L3] [CO6] | [7M] |
| 4 | a) | Sketch and explain the functionality of each block in Super-heterodyne FM receiver. | [L2] [CO6] | [7M] |
|  | b) | Define Noise and its classification. | [L2] [CO5] | [5M] |
| 5 | a) | Write a short note on internal noise sources. | [L1] [CO5] | [7M] |
|  | b) | Describe about the thermal noise and white Gaussian noise. | [L2] [CO5] | [5M] |
| 6 | a) | Explain effective noise temperature and noise figure. | [L2] [CO5] | [6M] |
|  | b) | A mixer stage has a noise figure of 20 dB and it is preceded by another amplifier with a noise figure of 9 dB and an available power gain of 15 dB . Calculate the overall noise figure referred to the input. | [L3] [CO5] | [6M] |
| 7 | a) | An amplifier operating over the frequency range from 18 to 20 MHZ has a $10 \mathrm{~K} \Omega$ input resistor. What is the rms noise voltage at the input to this amplifier if ambient temperature is $27^{\circ} \mathrm{C}$. | [L2] [CO5] | [6M] |
|  | b) | Define (i) Input $\mathrm{S} / \mathrm{N}$ ratio \&(ii) Output $\mathrm{S} / \mathrm{N}$ ratio (iii) Signal to Noise Ratio (iv) Figure of merit | [L2] [CO5] | [6M] |
| 8 |  | Derive the expression for figure of merit of AM (DSB-FC) system. | [L3] [CO5] | [12M] |
| 9 | a) | Derive the expression for output SNR of DSB-SC system. | [L3] [CO5] | [8M] |
|  | b) | Calculate the input signal to noise ratio for an amplifier with an output signal to noise ratio of 16 dB and a noise figure of 5.4 dB . | [L3] [CO5] | [4M] |
| 10 | a) | Prove that the figure of merit for SSB-SC is 1. | [L3] [CO5] | [8M] |
|  | b) | Compare the noise performance of SSB-SC system with that of DSB SC system. | [L4] [CO5] | [4M] |

## UNIT - V

ANALOG PULSE MODULATION SCHEMES AND INFORMATION THEORY

| 1 | a) | Define Analog pulse modulation and its classification | [L2] [CO3] | [5M] |
| :---: | :---: | :---: | :---: | :---: |
|  | b) | Explain the generation of PAM with mathematical analysis. | [L2] [CO4] | [7M] |
| 2 | a) | Discuss about the demodulation of PAM signals. | [L2] [CO2] | [7M] |
|  | b) | Derive the transmission bandwidth of PAM signal. | [L3] [CO4] | [5M] |
| 3 | a) | For a pulse-amplitude modulated transmission of voice signal having maximum frequency equal to 3 kHz , calculate the transmission bandwidth. It is given that the sampling frequency 8 kHz and pulse duration $0.1 \mathrm{~T}_{\mathrm{s}}$. | [L3] [CO4] | [7M] |
|  | b) | What are the advantages and disadvantages of PAM? | [L1] [CO4] | [5M] |
| 4 |  | With a neat sketch, explain the modulation \& demodulation of Pulse Duration Modulation. | [L2] [CO3] | [12M] |
| 5 | a) | Describe how a PPM signal can be generated and detected from PWM signal. | [L2] [CO4] | [8M] |
|  | b) | What are the advantages and disadvantages of PPM? | [L1] [CO4] | [4M] |
| 6 | a) | List the comparisons among PAM, PWM and PPM. | [L1] [CO4] | [5M] |
|  | b) | Briefly discuss about Time Division Multiplexing. | [L2] [CO2] | [7M] |
| 7 | a) | Briefly discuss about the frequency division multiplexing. | [L2] [CO2] | [8M] |
|  | b) | Differentiate between TDM \& FDM. | [L2] [CO2] | [4M] |
| 8 | a) | Explain about information content of message and information rate. | [L2] [CO6] | [6M] |
|  | b) | A source produces one of four possible symbols during each interval having probabilities $\mathrm{P}\left(\mathrm{x}_{1}\right)=1 / 2, \mathrm{P}\left(\mathrm{x}_{2}\right)=1 / 4, \mathrm{P}\left(\mathrm{x}_{3}\right)=\mathrm{P}\left(\mathrm{x}_{4}\right)=1 / 8$. Obtain the information content of each of these symbols. | [L3] [CO6] | [6M] |
| 9 | a) | Define Entropy and Mutual information. | [L2] [CO6] | [6M] |
|  | b) | An analog signal band limited to 10 KHZ is quantized eight levels of a PCM system with probabilities $1 / 2,1 / 4,1 / 5,1 / 5,1 / 10,1 / 10$, $1 / 20,1 / 20$. Find Entropy \& Rate of information. | [L3] [CO6] | [6M] |
| 10 | a) | Discuss about channel capacity theorem. | [L2] [CO6] | [3M] |
|  | b) | Illustrate the concept of Shannon's encoding algorithm. | [L2] [CO6] | [4M] |
|  | c) | Given four messages with probabilities $0.1,0.2,0.3,0.4$. Construct a binary code by using Shannon-Fano algorithm. Find $\eta_{\text {and }} \gamma$. | [L3] [CO6] | [5M] |

